Cloning, Expression, and Characterization of an Enzyme Possessing both Glutaredoxin and Dehydroascorbate Reductase Activity from Taiwanofungus camphorata

CHUAN-FU KEN,†,‡ CHAO-YI LIN,†,‡ YU-CHI JIANG,§,¶ LISA WEN,‖,¶ AND CHI-TSAI LIN*§

†Institute of Biotechnology, National Changhua University of Education, Changhua 500, Taiwan,
‡National Institute of Cancer Research, National Health Research Institutes, Zhunan 350, Taiwan,
§Institute of Bioscience and Biotechnology and Center for Marine Bioscience and Biotechnology,
National Taiwan Ocean University, Keelung 202, Taiwan, and ‖Department of Chemistry,
Western Illinois University, 1 University Circle, Macomb, Illinois 61455-1390. *These authors contributed equally to this work.

Glutaredoxins (Grxs) play important roles in the reduction of disulfides via reduced glutathione as a reductant. A cDNA (503 bp, EU193660) encoding a putative Grx was cloned from Taiwanofungus camphorata (Tc). The deduced amino acid sequence is conserved among the reported dithiol Grxs. A 3D homology structure was created for this TcGrx. To characterize the TcGrx enzyme, the coding region was subcloned into an expression vector pET-20b(+) and transformed into Escherichia coli. Functional TcGrx was expressed and purified by Ni²⁺-nitrilotriacetic acid Sepharose. The purified enzyme showed bands of ~15 kDa on 15% sodium dodecyl sulfate—polyacrylamide gel electrophoresis (SDS—PAGE). The TcGrx encodes a protein possessing both Grx and dehydroascorbate reductase (DHAR) activity. The Michaelis constant (K_m) values for β-hydroxyethyl disulfide (HED) and dehydroascorbate (DHA) were 0.57 and 1.85 mM, respectively. The half-life of deactivation of the protein at 100 °C was 8.5 min, and its thermal inactivation rate constant K_d was 6.52×10^{-2} min⁻¹. The enzyme was active under a broad pH range from 6.0 to 10.0 and in the presence of imidazole up to 0.4 M. The enzyme was susceptible to SDS denaturation and protease degradation/inactivation.

KEYWORDS: Taiwanofungus camphorata; glutaredoxin; three-dimension homology structure (3D homology structure); expression; β-hydroxyethyl disulfide [HED, (HOCH₂CH₂HS₂)]; dehydroascorbate (DHA)

INTRODUCTION

Taiwanofungus camphorata (T. camphorata, formerly named Antrodia camphorata, commonly known as Niuchangchih in Taiwan) is a medicinal mushroom species found only in the forests of Taiwan. T. camphorata has been traditionally used as a remedy for cancer and drug intoxication, among others, and has been shown to exhibit vasorelaxative (1), and anti-inflammatory (2) effects. Although T. camphorata shows physiological activities with great potential in medical applications, little is known about the exact bioactive compounds of the mushroom (3). Recently, we established an expressed sequence tag (EST) from fruiting bodies of T. camphorata to search physiologically active components for use. We have cloned and characterized a 1-Cys peroxiredoxin (4), 2-Cys peroxiredoxin (5), superoxide dismutase (6), catalase (7), glutathione formaldehyde dehydrogenase (8), and phospholipid hydroperoxide glutathione peroxidase (9) based on the established EST from T. camphorata.

Glutaredoxins (Grxs) are important antioxidative enzymes that can catalyze the reduction of disulfides via reduced glutathione (GSH) in a coupled system with glutathione reductase and NADPH. The enzymes have been found in most aerobic organisms, including prokaryotes and eukaryotes. On the basis of their catalytic structure properties, Grxs can be classified into three categories (10). The first is exemplified by Grx1 and Grx3 from Escherichia coli. They share 33% sequence identity, and both have the CPYC (Cys-Pro-Tyr-Cys) dithiol motif at their active site (11). The second category is related to the glutathione S-transferase. The larger E. coli Grx2 (24.3 kDa) belongs to this category (12). Grx2 cannot reduce the intracellular disulfides of ribonucleotide reductase Ia but has high catalytic activity in reducing mixed disulfides formed between glutathione and low- or high-molecular-weight substrates (13), such as β-hydroxyethyl disulfide (HED) and arsenate reductase, respectively. The third category is defined by having a monothiol active site (CGFS) (10). The dithiol Grxs are believed to play an important role in protecting cells against oxidative stresses (14–17).

Here, we report the cloning of an antioxidant enzyme, TcGrx cDNA, from T. camphorata on the basis of EST. The coding region of the TcGrx cDNA was introduced into an E. coli expression system; the active enzyme was purified; and its properties were studied. Understanding the properties of this TcGrx might be beneficial for its potential applications in medicine or as health food.
MATERIALS AND METHODS

RNA Extraction from *T. camphorata* and cDNA Synthesis. Fruiting bodies of *T. camphorata*, grown in the hay of *C. kanehirai*, were obtained from Asian Nova Biotechnology, Inc. (http://www.asian-bio.com/). Total RNA was prepared from fresh fruiting bodies (wet weight of 5 g) using Straight A’s mRNA isolation system (Novagen, Madison, WI). The total RNA (22 μg) was obtained, and 3 μg of the mRNA was used for cDNA synthesis using a ZAP-cDNA kit purchased from Stratagene (La Jolla, CA).

Isolation of TcGrx cDNA. We have previously established an EST database from fruiting bodies of *T. camphorata* and sequenced all clones with an insert size greater than 0.2 kb (data not shown). The identity of a Grx cDNA clone was assigned by comparing the inferred amino acid sequence in the National Center for Biotechnology Information (NCBI) database using the basic local alignment search tool (BLAST).

Bioinformatic Analysis of TcGrx. The BLASTP (protein–protein BLAST) program was used to search homologous protein sequences in the nonredundant database at the National Institutes of Health (NIH, http://www.ncbi.nlm.nih.gov/). Multiple alignments were constructed using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html) and Blast2sequences (18). Structural modeling was carried out using SWISS-MODEL (19) (http://swissmodel.expasy.org/SWISS-MODEL.html) to create a 3D homology structure based on the known X-ray structure of Grx C1 of *Populus tremula*. The modeling data was then superimposed by SYBYL 7.3 (TRIPOS Associates, Inc., kindly provided by Dr. Nady Shaw, National Changhua University of Education, Taiwan).

Subcloning of the TcGrx cDNA Coding Region into an Expression Vector. The coding region of the TcGrx cDNA was amplified using two gene-specific primers. The 5’ upstream primer contains the EcoRI recognition site (5’-GAA TTC GAT GTC TGC CGC AAA GAT C-3’), and the 3’ downstream primer contains the Xhol recognition site (5’-CTC GAG AAC AGC ACC GCC GAG ACC ATC CTT-3’). Using 0.1 μg of *T. camphorata* cDNA as a template and 10 pmol of each 5’ upstream and 3’ downstream primer, a 0.3 kb fragment was amplified by the polymerase

Figure 1. Alignment of the amino acid sequences of TcGrx with that of other organisms and 3D homology structure. (A) Sequence alignment: TcGrx (this study), AfGrx (*A. fumigatus*), BfGrx (*B. fuckeliana*), RcGrx (*R. communis*), NcGrx (*N. crassa*), PtGrx (*P. tremula* x *P. tremuloides*), and ScGrx (*S. cerevisiae*). Identical amino acids in all sequences are shaded black, and conservative replacements are shaded gray. Protein secondary structure was predicted by SWISS-MODEL and represented as α helices and β strands. (B) Three-dimensional homology structure of TcGrx. The structural model of TcGrx was created on the basis of the known structure of Grx C1 from *P. tremula* via SWISS-MODEL and was superimposed to obtain better structure alignment via SYBYL 7.3. Superimposition of TcGrx (light blue) and Grx C1 (pink) was shown using protein solid ribbons.
chain reaction (PCR). The fragment was ligated into pCR4.0 and transformed into E. coli Ecos101. Plasmid DNA was isolated from the clone and digested with EcoRI and XhoI. The digestion products were separated on a 1.5% agarose gel. The 0.3 kb insert DNA was gel-purified and subcloned into EcoRI and XhoI sites of PET-20b(+) vector (Novagen, Madison, WI). The recombinant DNA was then transformed into E. coli BL21(DE3)pLysS.

Expression and Purification of the Recombinant TcGrx. The transformed E. coli containing the TcGrx was grown at 37 °C in 80 mL of Luria–Bertani medium containing 50 μg/mL ampicillin until A600 reached 0.75. Protein expression was induced by the addition of isopropyl β-D-thiogalactopyranoside (IPTG) to a final concentration of 1 mM. The culture was incubated at 37 °C for an additional 4 h at 120 rpm shaking, and then the cells were harvested by centrifugation. Cells were suspended in 2 mL of phosphate-buffered saline (PBS) containing 1% glycerol and 1 g glass beads as described before (20). The content was vortexed for 5 min and centrifuged at 10,000g for 5 min. The extraction procedure was repeated 3 times, and the supernatants were combined. The TcGrx was purified by nickel–nitrilotriacetic acid (Ni–NTA) affinity chromatography as per the instructions of the manufacturer (Qiagen) and then dialyzed as described before (20). The dialyzed sample was either used directly for analysis or stored at −20 °C until use. The protein concentration was determined by a Bio-Rad protein assay kit (Richmond, CA) using bovine serum albumin as a reference standard.

Molecular-Mass Determination via Electrospray Ionization Quadrupole-Time-of-Flight (ESI-Q-TOF). The purified recombinant TcGrx (0.4 mg/mL) was prepared in 0.003 μM PBS containing 0.05 mM imidazole and 0.05% glycerol. The sample (5 μL) was used for molecular-mass determination using ESI-Q-TOF mass spectrometry (Micromass, Manchester, U.K.).

Grx Activity Assay. Grx activity was determined by the HED assay ([HOCH2CH2)2S2]- assay (21). The reaction mixture contained 100 mM Tris–Cl (pH 7.4), 0.6 μg of GR (glutathione reductase, Sigma), 0.3 mM HED, 0.2 mM NADPH, and 0.8 mM GSH in a total volume of 100 μL. A mixed disulfide between HED and GSH was formed within 2 min, and the reaction was started by the addition of 0.014–0.216 μg of TcGrx. The reaction rate was monitored by the decrease in A340 because of the oxidation of NADPH.

Dehydroascorbate Reductase (DHAR) Activity Assay (22). The DHAR assay method is same as the HED assay, except that 0.2 mM dehydroascorbate (DHA, Sigma) was used instead of HED as the substrate.

Peroxidase Activity Assay. This method is same as the HED assay, except that 0.3 mM hydrogen peroxide was used instead of HED as the substrate.

Kinetic Studies. The recombinant TcGrx protein was tested for Grx or DHAR activities at 25 °C by monitoring the consumption of NADPH at A340 for HED or DHA reduction as described above. The kinetic was studied using the recombinant TcGrx (0.18 μg) in a total volume of 100 μL at different concentrations of HED (0.3–2.4 mM) or different concentrations of DHA (0.2–3.0 mM). For each reaction, the NADPH was maintained at 0.2 mM and the initial rate was followed by measuring the decrease in A340 for 10–40 s. The extinction coefficient of NADPH at 340 nm is 6.22 × 105 M–1 cm–1. Vmax, kcat, and kcat/Km were calculated from Lineweaver–Burk plots.

TeGrx Activity Assay under Various Conditions. The enzyme sample was tested for Grx activity by the HED assay after various treatments. Aliquots of the TeGrx sample were treated as follows: (1) Thermal effect. The enzyme sample was heated to 100 °C for 2, 4, 8, or 16 min. (2) pH effect. The enzyme sample was adjusted to the desired pH by adding a half volume of buffer with different pH values: 0.2 M citrate buffer (pH 2.5 or 4.0), 0.2 M Tris–HCl buffer (pH 6.0 or 8.0), or 0.2 M glycine–NaOH buffer (pH 10.0 or 11.0). Each sample was incubated at 37 °C for 1 h. (3) Imidazole effect. During protein purification, the TcGrx enzyme was eluted with imidazole. Therefore, the effect of imidazole on protein activity was examined. Imidazole was added to the enzyme sample to the levels of 0.2, 0.4, or 0.8 M and incubated at 37 °C for 1 h. (4) Sodium dodecyl sulfate (SDS) effect. SDS, a denaturing reagent, was added to the enzyme sample to the levels of 0.5, 1, or 2% and incubated at 37 °C for 1 h. (5) Susceptibility to digestive proteases. The enzyme was incubated with one-tenth its weight of trypsin or chymotrypsin at pH 8.0 and 37 °C for a period of 5, 10, or 20 min. After each treatment, the Grx activity of the sample was tested by the HED assay.

RESULTS AND DISCUSSION

Cloning and 3D Homologous Modeling of TcGrx. Approximately 20,000 T. camphorata cDNA clones were sequenced. The nucleotide sequences and the inferred amino acid sequences were
compared to the NCBI (www.ncbi.nlm.nih.gov) database using the BLAST programs. A putative TcGrx cDNA clone was identified by sequence homology to the published Grxs. The coding region of TcGrx cDNA was 306 bp that encodes a protein of 102 amino acid residues with a calculated molecular mass of 11 kDa (EMBL accession number EU193660).

Figure 1 shows the optimal alignment of the amino acid sequences of TcGrx with six other selected Grx sequences. This TcGrx shared 65% identity with AfGrx (Aspergillus fumigatus, XM_745266), 60% with BfGrx (Botryotinia fuckeliana, XM_001555685), 50% with RcGrx (Ricinus communis, Z49699), 56% with NcGrx (Neurospora crassa, EAA33249), 45% with PtGrx (Populus tremula x Populus tremuloides, AY833406.1, PDB ID 1z7p), and 41% with ScGrx (Saccharomyces cerevisiae, NP009895). The TcGrx enzyme appears to belong to the dithiol Grx subfamily because the characteristic catalytic motif C25 PYC 28 (Figure 1) is conserved.

The predicted secondary structure of TcGrx was represented as α helices and β strands (Figure 1A). The 3D structural model of TcGrx was created on the basis of the known structure of Grx C1 of Populus tremula (23), exhibiting a typical thioredoxin/glutaredoxin fold.

Expression and Purification of the Recombinant TcGrx. The coding region of TcGrx (306 bp) was amplified by PCR and subcloned into an expression vector, pET-20b(+), as described in the Materials and Methods. Positive clones were verified by DNA sequence analysis. The recombinant TcGrx was expressed as a 6His-tagged fusion protein and was purified by affinity chromatography with nickel chelating Sepharose, and the proteins were analyzed by 15% SDS–polyacrylamide gel electrophoresis (PAGE). A band with a molecular mass of ~15 kDa (expected size of the His6-TcGrx monomer) was detected in Ni–NTA eluted fractions as analyzed by SDS–PAGE (lanes 4–9 in Figure 2). Two TcGrx bands were seen in the affinity-purified protein (lanes 4–6 in Figure 2 and Figure 5A). It is believed that Cys25 and Cys28 are far apart enough to form an intramolecular disulfide bond (Figure 1B). Therefore, it is possible that the lower band represented a more compact TcGrx with an intramolecular disulfide bond formed between Cys25 and Cys28. The fractions that contained pure protein were pooled and characterized further. An ESI Q-TOF of TcGrx reveals the presence of only the monomeric form of 15 kDa protein under the conditions of 0.003 M PBS containing 0.005 mM imidazole and 0.05% glycerol. This indicates that the enzyme is monomeric in nature. The yield of the purified His6-tagged TcGrx was 1.62 mg from 80 mL of culture. Functional TcGrx was detected by activity assays as described below.

TcGrx Displays Both Grx and DHAR Activities. The purified TcGrx protein was tested for Grx, DHAR, and peroxidase activities using HED, DHA, or hydrogen peroxide as the substrate, respectively. As shown in Figure 3, TcGrx possessed Grx activity because it can reduce disulfide bonds of HED. The TcGrx enzyme also possessed DHAR activity because it is able to catalyze the conversion of DHA to ascorbic acid (AsA). Both activities exhibit linearity between TcGrx levels and the reaction conditions.
Means of three experiments.

Table 1. Kinetic Characterization of TcGrx and Comparison to Other Published Grxs

<table>
<thead>
<tr>
<th></th>
<th>T. camphorata</th>
<th>E. coli</th>
<th>S. cerevisiae</th>
<th>C. reinhardtii</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_m (mM)</td>
<td>0.57</td>
<td>3.0</td>
<td>0.12</td>
<td>2.65</td>
<td>1.9</td>
</tr>
<tr>
<td>k_{cat} (min$^{-1}$)</td>
<td>1633.0</td>
<td>6900</td>
<td>132</td>
<td>9696</td>
<td>19200</td>
</tr>
<tr>
<td>k_{cat}/K_m</td>
<td>2864.9</td>
<td>2300</td>
<td>1100</td>
<td>3658.9</td>
<td>10105</td>
</tr>
<tr>
<td>K_m (mM)</td>
<td>1.85</td>
<td>0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k_{cat} (min$^{-1}$)</td>
<td>1291.8</td>
<td>100.2</td>
<td></td>
<td></td>
<td>256.9</td>
</tr>
<tr>
<td>k_{cat}/K_m</td>
<td>668.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aValues for Grx are from this work (T. camphorata) or from the literature [E. coli (24), S. cerevisiae (25), C. reinhardtii (22), and human (24)].

Methods and then analyzed by 15% SDS–PAGE or the HED assay. The enzyme activity appeared to be heat-stable. Approximately 50% of the TcGrx activity was retained at 100 °C for 8.5 min (Figure 5). The TcGrx activity was in a broad range of pH from 6.0 to 10.0, as shown in Figure 6A. The enzyme retained about 70% activity in 0.8 M imidazole (Figure 6B). The enzyme lost activity in 0.5% SDS (Figure 6C).

The TcGrx enzyme was tested for its susceptibility toward trypsin or chymotrypsin degradation. The results showed that only 10% of its Grx activity retained after 5 min of incubation at 37 °C with one-tenth its weight of trypsin or chymotrypsin (Figure 6D), suggesting that the TcGrx was quite susceptible to trypsin and chymotrypsin. The amino acid sequence of TcGrx as shown in Figure 1 contains 44 potential trypsin cleavage sites and 53 potential chymotrypsin high-specificity (C term to [FYW]) and not before P cleavage sites. Our results indicated that several of the cleavage sites are readily susceptible to trypsin and chymotrypsin.

In conclusion, we have expressed, purified, and characterized TcGrx. The enzyme displays both Grx and DHAR activities, both of which are important antioxidants. The fruiting body of T. camphorata is well-known in Taiwan for treating cancer and inflammation. Little is known about the actions of its biological effects. This TcGrx may be one of the important physiological components in T. camphorata responsible for its medicinal efficacy. The availability of the TcGrx clone will facilitate further investigation in its medical applications.

LITERATURE CITED

(17) Benabdellah, K.; Merlos, M. A.; Azcon-Aguilar, C.; Ferrol, N. GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genet. Biol. 2009, 46, 94–103.